Probability and Probability Distributions

Exercise 1:

Electro Co has determined that the assembly time for a particular electrical component is normally distributed with a mean of 20 minutes and a standard deviation of 3 minutes.

a) What is the probability that **an employee** (**P** (**X**< **22**)) in the assembly division takes less than 22 minutes to assemble one of these components?

$$\mu = 20$$

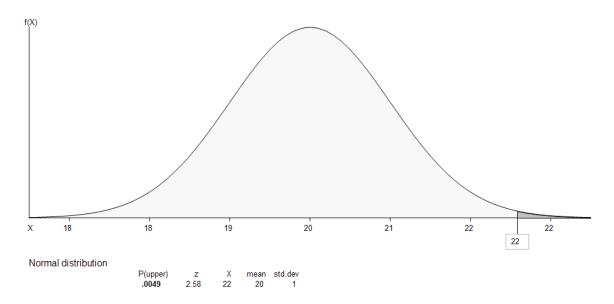
$$\sigma = 3$$

$$P(x < 22) = 0.7475$$

$$P(x > 22) = P\left(z < \frac{22 - 20}{3}\right) = P(z < 0.67) = 0.7475$$

			_	
Normal Distribution				
×	22		• calculate P	_
mean	2	20		
standard deviation		3		
Show axis points	į	Shading —		— Color — ⊙ <u>S</u> olid co
☐ Sho <u>w</u> center line		C upper		C Transp
X Axis	labels	C two-tail		C Patterr
none Roun	ding			O No sha

b) What is the probability that the average assembly time for 15 employees exceeds 22 minutes?

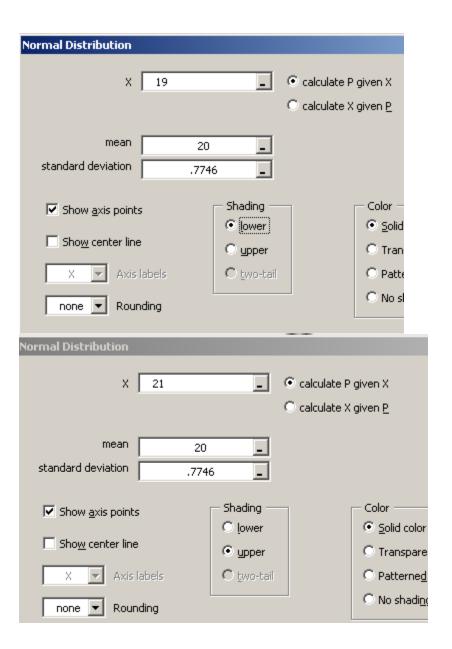

$$\mu_{\overline{x}} = \mu = 20$$

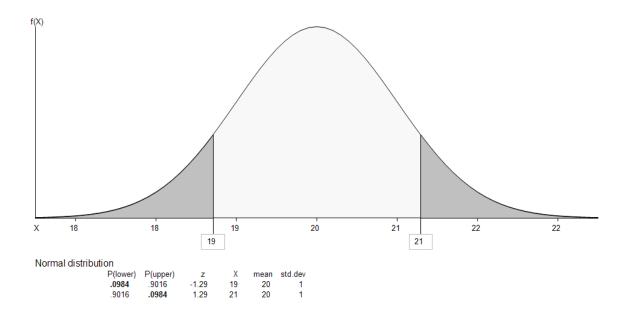
$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{3}{\sqrt{15}} = 0.7746$$

$$P(\overline{x} > 22) = 0.0049$$

$$P(\overline{x} > 22) = P\left(z > \frac{22 - 20}{0.7746}\right) = P(z > 2.58) = 0.0049$$

Normal Distribution					
x	22		_	• calculate P	_
mean standard deviation		20 0.7746			
✓ Show <u>a</u> xis points			Shading — C lower © upper		— Color −
X Axis I			C two-tail		C Patt


c) What is the probability that the average assembly time for 15 employees is between 19 and 21 minutes?


$$\mu_{\bar{x}} = \mu = 20$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{3}{\sqrt{15}} = 0.7746$$

$$P(19 < \overline{x} < 21) = 0.9016 - 0.0984 = 0.8032$$

$$P(19 < \overline{x} < 21) = P\left(\frac{19 - 20}{0.7746} < z < \frac{21 - 20}{0.7746}\right) = P(-1.29 < z < 1.29) = 0.9016 - 0.0984 = 0.8032$$

Exercise 2:

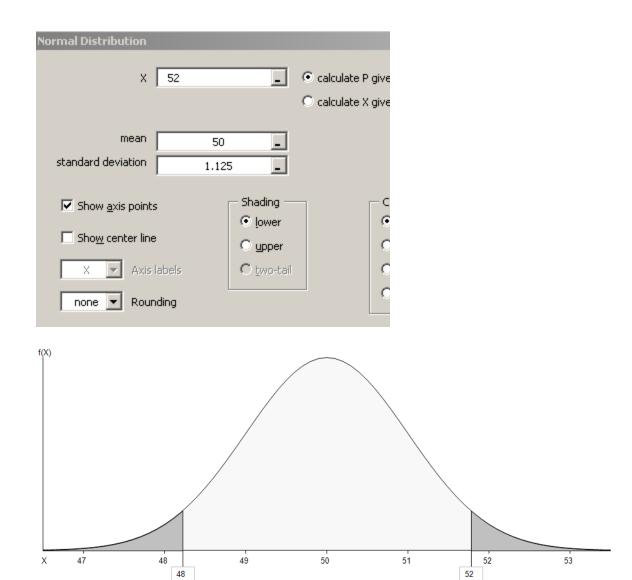
A population is known to have a mean of 50 and a standard deviation of 9.

If a sample of 64 is taken from the population, what is the probability that the sample mean will fall in the interval of 48 to 52?

$$\mu = 50$$

$$\sigma = 9$$

$$n = 64$$


$$\mu_{\overline{x}} = \mu = 50$$

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} = \frac{9}{\sqrt{64}} = 1.125$$

$$P(48 < \overline{x} < 52) = 0.9623 - 0.0377 = 0.9246$$

$$P(48 < \overline{x} < 52) = P\left(\frac{48 - 50}{1.125} < z < \frac{52 - 50}{1.125}\right) = P(-1.78 < z < 1.78) = 0.9623 - 0.0377 = 0.9246$$

Normal Distribution				
× [48		 calculate P calculate X	
mean standard deviation	50 1.125	_		
✓ Show <u>a</u> xis points	Г	Shading —]	– Color − ⊙ <u>S</u> olic
☐ Sho <u>w</u> center line		C upper		C Tran
X ▼ Axis la	bels	C two-tail		O Patt
none Round	ling			○ No s

